Rapid plant diversification: planning for an evolutionary future.
نویسندگان
چکیده
Systematic conservation planning is a branch of conservation biology that seeks to identify spatially explicit options for the preservation of biodiversity. Alternative systems of conservation areas are predictions about effective ways of promoting the persistence of biodiversity; therefore, they should consider not only biodiversity pattern but also the ecological and evolutionary processes that maintain and generate species. Most research and application, however, has focused on pattern representation only. This paper outlines the development of a conservation system designed to preserve biodiversity pattern and process in the context of a rapidly changing environment. The study area is the Cape Floristic Region (CFR), a biodiversity hotspot of global significance, located in southwestern Africa. This region has experienced rapid (post-Pliocene) ecological diversification of many plant lineages; there are numerous genera with large clusters of closely related species (flocks) that have subdivided habitats at a very fine scale. The challenge is to design conservation systems that will preserve both the pattern of large numbers of species and various natural processes, including the potential for lineage turnover. We outline an approach for designing a system of conservation areas to incorporate the spatial components of the evolutionary processes that maintain and generate biodiversity in the CFR. We discuss the difficulty of assessing the requirements for pattern versus process representation in the face of ongoing threats to biodiversity, the difficulty of testing the predictions of alternative conservation systems, and the widespread need in conservation planning to incorporate and set targets for the spatial components (or surrogates) of processes.
منابع مشابه
Rush hour in the Museum - Diversification patterns provide new clues for the success of
Tropical rainforests harbour much of the earth's plant diversity but little is still known about how it evolved and why a small number of plant genera account for the majority. Whether this success is due to rapid turnover or constant evolution for these hyper-diverse plant genera is here tested for the species-rich genus Ficus L. (figs). The pan-tropical distribution of figs makes it an ideal ...
متن کاملRush hour in the Museum - Diversification patterns provide new clues for the success of Ficus
Tropical rainforests harbour much of the earth's plant diversity but little is still known about how it evolved and why a small number of plant genera account for the majority. Whether this success is due to rapid turnover or constant evolution for these hyper-diverse plant genera is here tested for the species-rich genus Ficus L. (figs). The pan-tropical distribution of figs makes it an ideal ...
متن کاملEco-evolutionary Model of Rapid Phenotypic Diversification in Species-Rich Communities
Evolutionary and ecosystem dynamics are often treated as different processes -operating at separate timescales- even if evidence reveals that rapid evolutionary changes can feed back into ecological interactions. A recent long-term field experiment has explicitly shown that communities of competing plant species can experience very fast phenotypic diversification, and that this gives rise to en...
متن کاملWidespread adaptive evolution during repeated evolutionary radiations in New World lupins
The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation ...
متن کاملFuture Perspectives in Plant Biology Genome-Enabled Research on the Ecology of Plant-Insect Interactions
Plants and insects comprise the most species-rich lineages of multicellular eukaryotes. Most insects are herbivores, and generally have specific adaptations for feeding on a very limited group of evolutionarily or biochemically related host plants in their natural habitats. Coevolutionary interactions (reciprocal natural selection) between plants and insects are hypothesized to be the crucible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 10 شماره
صفحات -
تاریخ انتشار 2001